\(\int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx\) [185]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 203 \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {2 (-1)^{3/4} B \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}-\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {(i A-B) \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {(A+3 i B) \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

2*(-1)^(3/4)*B*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(3/2)/d+(-1/4+1/4*I)*(A-
I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(3/2)/d+1/2*(A+3*I*B)*tan(d*x+c)^(1/2)
/a/d/(a+I*a*tan(d*x+c))^(1/2)+1/3*(I*A-B)*tan(d*x+c)^(3/2)/d/(a+I*a*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {3676, 3682, 3625, 211, 3680, 65, 223, 209} \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {2 (-1)^{3/4} B \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {(-B+i A) \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {(A+3 i B) \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}} \]

[In]

Int[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(2*(-1)^(3/4)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(3/2)*d) - ((1/
4 - I/4)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(3/2)*d) + ((I
*A - B)*Tan[c + d*x]^(3/2))/(3*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((A + (3*I)*B)*Sqrt[Tan[c + d*x]])/(2*a*d*Sqr
t[a + I*a*Tan[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3676

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b - a*B))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*a*f
*m)), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d
*n) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(i A-B) \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {\int \frac {\sqrt {\tan (c+d x)} \left (\frac {3}{2} a (i A-B)+3 i a B \tan (c+d x)\right )}{\sqrt {a+i a \tan (c+d x)}} \, dx}{3 a^2} \\ & = \frac {(i A-B) \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {(A+3 i B) \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {3}{4} a^2 (A+3 i B)-3 a^2 B \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{3 a^4} \\ & = \frac {(i A-B) \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {(A+3 i B) \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {(A-i B) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{4 a^2}-\frac {(i B) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{a^3} \\ & = \frac {(i A-B) \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {(A+3 i B) \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {(i B) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{a d}+\frac {(i A+B) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{2 d} \\ & = \frac {\left (\frac {1}{4}+\frac {i}{4}\right ) (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {(i A-B) \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {(A+3 i B) \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {(2 i B) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{a d} \\ & = \frac {\left (\frac {1}{4}+\frac {i}{4}\right ) (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {(i A-B) \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {(A+3 i B) \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {(2 i B) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a d} \\ & = \frac {2 (-1)^{3/4} B \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {(i A-B) \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {(A+3 i B) \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.58 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.88 \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {\sqrt {a+i a \tan (c+d x)} \left (12 \sqrt [4]{-1} B \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) (1+i \tan (c+d x))^{3/2}+\sqrt {\tan (c+d x)} (-3 (A+3 i B)+(-5 i A+11 B) \tan (c+d x))\right )}{6 a^2 d (-i+\tan (c+d x))^2} \]

[In]

Integrate[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((1/4 + I/4)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(3/2)*d) +
 (Sqrt[a + I*a*Tan[c + d*x]]*(12*(-1)^(1/4)*B*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*(1 + I*Tan[c + d*x])^(3/2
) + Sqrt[Tan[c + d*x]]*(-3*(A + (3*I)*B) + ((-5*I)*A + 11*B)*Tan[c + d*x])))/(6*a^2*d*(-I + Tan[c + d*x])^2)

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1214 vs. \(2 (160 ) = 320\).

Time = 0.19 (sec) , antiderivative size = 1215, normalized size of antiderivative = 5.99

method result size
derivativedivides \(\text {Expression too large to display}\) \(1215\)
default \(\text {Expression too large to display}\) \(1215\)
parts \(\text {Expression too large to display}\) \(1229\)

[In]

int(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/24*I/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/a^2*(24*I*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I
*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a+20*A*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2*(a*t
an(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-3*I*A*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(
d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-3*A*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3-9*I*B*(I*a)^(1/2)*2^(1/2)*l
n((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+
c)+9*I*A*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+
c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2-36*I*B*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+9*B*2
^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I
*a)^(1/2)*a*tan(d*x+c)^2+24*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/
(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^3+44*I*B*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
*tan(d*x+c)^2-32*I*A*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+9*A*(I*a)^(1/2)
*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*
a*tan(d*x+c)-72*I*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2
))*(-I*a)^(1/2)*a*tan(d*x+c)^2+3*I*B*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x
+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3-3*B*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1
/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-72*B*ln(1/2*(2*I*a*tan(d*x+c)+
2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)+80*B*(I*a)^(1/2)
*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)-12*A*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+
I*tan(d*x+c)))^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-tan(d*x+c)+I)^3/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 758 vs. \(2 (149) = 298\).

Time = 0.35 (sec) , antiderivative size = 758, normalized size of antiderivative = 3.73 \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {{\left (3 \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {2 i \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{4 i \, A + 4 \, B}\right ) - 3 \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {-2 i \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{4 i \, A + 4 \, B}\right ) + 3 \, a^{2} d \sqrt {\frac {4 i \, B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {52 \, {\left (4 \, \sqrt {2} {\left (B e^{\left (3 i \, d x + 3 i \, c\right )} + B e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - {\left (3 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a^{2} d\right )} \sqrt {\frac {4 i \, B^{2}}{a^{3} d^{2}}}\right )}}{605 \, {\left (B e^{\left (2 i \, d x + 2 i \, c\right )} + B\right )}}\right ) - 3 \, a^{2} d \sqrt {\frac {4 i \, B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {52 \, {\left (4 \, \sqrt {2} {\left (B e^{\left (3 i \, d x + 3 i \, c\right )} + B e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - {\left (-3 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a^{2} d\right )} \sqrt {\frac {4 i \, B^{2}}{a^{3} d^{2}}}\right )}}{605 \, {\left (B e^{\left (2 i \, d x + 2 i \, c\right )} + B\right )}}\right ) - \sqrt {2} {\left (2 \, {\left (2 \, A + 5 i \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, {\left (A + 3 i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - A - i \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \]

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/12*(3*sqrt(1/2)*a^2*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log((2*I*sqrt(1/2)*a^2*d
*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^3*d^2))*e^(I*d*x + I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(4*I*A + 4*B))
 - 3*sqrt(1/2)*a^2*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log((-2*I*sqrt(1/2)*a^2*d*sq
rt((-I*A^2 - 2*A*B + I*B^2)/(a^3*d^2))*e^(I*d*x + I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqr
t(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(4*I*A + 4*B)) +
3*a^2*d*sqrt(4*I*B^2/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(52/605*(4*sqrt(2)*(B*e^(3*I*d*x + 3*I*c) + B*e^(I*d*x
+ I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - (3*I*
a^2*d*e^(2*I*d*x + 2*I*c) - I*a^2*d)*sqrt(4*I*B^2/(a^3*d^2)))/(B*e^(2*I*d*x + 2*I*c) + B)) - 3*a^2*d*sqrt(4*I*
B^2/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(52/605*(4*sqrt(2)*(B*e^(3*I*d*x + 3*I*c) + B*e^(I*d*x + I*c))*sqrt(a/(e
^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - (-3*I*a^2*d*e^(2*I*d*x
 + 2*I*c) + I*a^2*d)*sqrt(4*I*B^2/(a^3*d^2)))/(B*e^(2*I*d*x + 2*I*c) + B)) - sqrt(2)*(2*(2*A + 5*I*B)*e^(4*I*d
*x + 4*I*c) + 3*(A + 3*I*B)*e^(2*I*d*x + 2*I*c) - A - I*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d
*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-3*I*d*x - 3*I*c)/(a^2*d)

Sympy [F]

\[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tan(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)**(3/2)/(I*a*(tan(c + d*x) - I))**(3/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Non regular value [0] was discarded and replaced randomly by 0=[18]Warning, replacing 18 by 97, a substitut
ion variabl

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

[In]

int((tan(c + d*x)^(3/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

int((tan(c + d*x)^(3/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(3/2), x)